Ngưng đọng hơi hóa học rutheni Rutheni

Thách thức duy nhất phát sinh trong cố gắng phát triển các màng rutheni tinh khiết để làm chất xúc tác. Rutheni kim loại hoạt hóa các liên kết C-H và C-C, hỗ trợ sự phân cắt liên kết C-H và C-C. Nó tạo ra con đường phân hủy xúc tác tiềm năng cho mọi tiền chất ngưng đọng hơi hóa học (CVD) hữu cơ kim loại mà có thể nhất dẫn tới sự hợp nhất cacbon đáng kể. Platin, một chất xúc tác tương tự về mặt hóa học, xúc tác quá trình khử hiđrô của các hydrocacbon mạch vòng 5- và 6-thành viên thành benzen.[5] Các dải d của rutheni nằm cao hơn các dải d của platin, nói chung dự báo các liên kết hút bám-rutheni mạnh hơn so với platin. Vì thế, rất có thể là rutheni cũng xúc tác cho quá trình khử hiđrô của các vòng hydrocacbon 5- và 6-thành viên thành benzen. Benzen bị khử hiđrô tiếp trên bề mặt rutheni thành các đoạn hydrocacbon tương tự như những gì tạo thành bởi axetylenethen trên bề mặt rutheni.[6][7] Ngoài benzen, axetylen và ethen thì pyridin cũng bị phân hủy trên bề mặt rutheni, để lại các đoạn đã liên kết trên bề mặt.[7]

Rutheni cũng được nghiên cứu kỹ trong khoa học bề mặt và trong các tài liệu về xúc tác do tầm quan trọng của nó như là một chất xúc tác trong công nghiệp. Có nhiều nghiên cứu về hành vi của các phân tử đơn lẻ trên rutheni trong khoa học bề mặt. Tuy nhiên, việc hiểu bản chất hành vi của mỗi phối thể một cách riêng lẻ không tương đương với việc hiểu bản chất hành vi của chúng khi đồng hút bám với nhau và cùng với tiền chất. Trong khi không có khác biệt về áp suất một cách đáng kể giữa các nghiên cứu khoa học bề mặt và CVD, nhưng thường có khoảng trống nhiệt độ giữa các nhiệt độ được báo cáo trong các nghiên cứu khoa học bề mặt và nhiệt độ phát triển CVD. Mặc cho các phức tạp này, rutheni là ứng viên tiềm năng cho việc hiểu CVD và thiết kế tiền chất của các màng xúc tác.

Các phối thể là các hợp chất ổn định theo đúng nghĩa, thời gian tiếp xúc phối thể-rutheni ngắn và nhiệt độ chất nền vừa phải giúp tối thiểu hóa sự phân hủy phối thể không mong muốn trên bề mặt.[8][9][10] Sự hoạt hóa liên kết C-H và C-C là phụ thuộc nhiệt độ. Sự khử hút thấm bề mặt của sản phẩm cũng phụ thuộc nhiệt độ, nếu như sản phẩm không liên kết vào bề mặt rutheni. Điều này gợi ý rằng có một nhiệt độ tối ưu nào đó, mà tại đó phần lớn các phối thể ổn định độc lập có vừa đủ năng lượng nhiệt để khử hút thấm từ bề mặt màng rutheni trước khi sự hoạt hóa C-H có thể xảy ra. Ví dụ, benzen bắt đầu phân hủy trên bề mặt rutheni ở 87 °C. Tuy nhiên, phản ứng khử hiđrô không dẫn tới phân đoạn cho đến khi đạt 277 °C và sự phân đoạn trọn vẹn không quan sát thấy ở các độ bao phủ bề mặt thấp. Điều này gợi ý rằng các phân tử benzen hút bám đã cung cấp là không gần với nhau trên bề mặt và khi nhiệt độ dưới 277 °C thì phần lớn các phân tử benzen có thể không góp phần vào sự hợp nhất cacbon trên màng xúc tác. Vì thế, lưu ý cơ bản trong phát triển các màng xúc tác kim loại cho CVD, như rutheni, là sự kết hợp của thiết kế phân tử và các khía cạnh động lực học của sự phát triển theo cách thức thuận lợi nhất.

Trước khi các tiền chất hữu cơ-kim loại được khảo sát, trirutheni dodecacacbonyl (Ru3(CO)12) đã được thử nghiệm như là tiền chất CVD.[11][12] Trong khi tiền chất này tạo ra các màng chất lượng tốt thì áp suất hơi lại kém, làm phức tạp hóa việc sử dụng trên thực tế của nó trong công nghệ CVD. Ruthenocen[13][14] và bis(ethylcyclopentadienyl)rutheni (II)[15][16][17][18] và beta-diketonat rutheni (II)[19][20][21] đã được khảo sát tương đối kỹ. Mặc dù các tiền chất này cũng có thể tạo ra các màng tinh khiết với suất kháng thấp khi phản ứng với ôxy, nhưng tốc độ phát triển lại rất thấp hay không được thông báo. Một tiền chất phát triển nhanh, cyclopentadienyl-propylcyclopentadienylrutheni (II) (RuCp(i-PrCp)), đã được nhận dạng.[22] RuCp(i-PrCp đạt được tốc độ phát triển từ 7,5 nm/phút tới 20 nm/phút cũng như có suất kháng thấp. Tuy nhiên, nó không tạo nhân trong các ôxít, loại bỏ việc sử dụng nó trong mọi ứng dụng, ngoại trừ trong các lớp hoạt động nối liền nhau bằng đồng.

Một mô hình thiết kế tiền chất nguồn đơn lẻ mới, hóa trị 0 đã được Schneider và ctv đề ra với (1,5-cyclooctadien)(toluen)Ru(0) ((1,5-COD)(toluen)Ru)[9] và (1,3-cyclohexadien)(benzen)Ru(0) ((1,3-CHD)(benzen)Ru)[8], cũng được thử nghiệm độc lập bởi Choi và ctv.[23] Sử dụng (1,5-COD)(toluen)Ru, Schneider phát hiện thấy các liên kết C-H dễ dàng hoạt hóa trong 1,5-COD. Mặc dù mức hợp nhất cacbon là thấp (1-3%), nhưng tốc độ phát triển chỉ ở mức khoảng 0,28 nm/phút khi tốt nhất. Sử dụng (1,3-CHD)(benzen)Ru thì 1,3-CHD bị khử hiđrô thành benzen như dự kiến, nhưng sự đa dạng lớn của các phản ứng bề mặt có thể với sự tham dự của 2 phối thể được tạo ra trong cửa sổ quy trình hẹp, trong đó hàm lượng cacbon là thấp.

Tài liệu tham khảo

WikiPedia: Rutheni http://rsc.anu.edu.au/research/hill.php http://www.brightsurf.com/news/headlines/32014/Nan... http://www.springerlink.com/content/n265k571444pw7... http://www.webelements.com/webelements/elements/te... http://www-d0.fnal.gov/hardware/cal/lvps_info/engi... http://periodic.lanl.gov/elements/44.html http://www.osti.gov/energycitations/product.biblio... http://openmopac.net/data_normal/ruthenium(i)%20fl... http://www.americanscientist.org/template/AssetDet... http://education.jlab.org/itselemental/ele044.html